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Abstract 
To reduce mission cost and improve spacecraft performance, the National Aeronautics and Space 

Administration and the United States military are considering the use of distributed spacecraft 

architectures in several future missions.  Precise relative control of separated spacecraft position and 

attitude is an enabling technology for many science and defense applications that require distributed 

measurements and autonomous docking.  The SPHERES testbed provides a low-risk, representative 

dynamic environment for the interactive development and verification of formation flight, rendezvous, 

and docking control and autonomy algorithms.  The SPHERES Guest Scientist Program provides 

remote investigators access to the testbed through the interface framework described in this document.  

The Guest Scientist Program algorithm and code development process involves several development 

and verification steps, culminating with SPHERES tests in micro-gravity aboard the ISS. 
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1 SPHERES Overview 
The SPHERES testbed is a risk mitigation tool, providing a risk-tolerant medium for the development 

and maturation of formation flight and docking algorithms.  The testbed was originally manifested for 

launch to the International Space Station (ISS) on service flight 12A.1 in July 2003; however, due to 

the grounding of the Space Shuttle fleet after the Columbia disaster, the Space Systems Laboratory has 

secured an alternate means of hardware delivery to the ISS.  A small portion of the testbed is already 

onboard the station, having been delivered by an unmanned Russian Progress re-supply vehicle in 

August 2003.  A significant portion of the testbed will launch aboard Progress 13P (currently 

scheduled for November 2003), after which time SPHERES operations onboard the ISS will 

commence.  The remainder of the hardware will fly as originally planned on service flight 12A.1 when 

Space Shuttle flights resume.   

 

The testbed will be operated inside the station by United States astronauts.  Six degree-of-freedom 

(DOF) operations on the ISS are complemented by a 3 DOF low-friction air table facility in the Space 

Systems Laboratory (SSL) at MIT.  The SPHERES separated spacecraft testbed provides investigators 

with a long-term, replenishable, and upgradeable platform for the validation of high-risk metrology, 

control, and autonomy technologies.  These technologies are critical to the operation of distributed 

spacecraft and docking missions such as Terrestrial Planet Finder and Orbital Express.   

 

The SPHERES testbed consists of three free-flyer vehicles (commonly referred to as “satellites” or 

“spheres”), five ultrasonic beacons, and a laptop control station.  The satellites are self-contained, with 

onboard power, propulsion, communications, sensor, and computer subsystems.  They operate semi-

autonomously, requiring human interaction primarily for replenishment of consumables and to 

command the beginning of each test.  An external view of the sphere design, showing thrusters, 

ultrasonic sensors, propellant tank, and pressure system regulator knob, is given in Figure 1.   

 

This document details the Guest Scientist Program interfaces 

to the existing SPHERES flight software, and provides guest 

scientists with a framework in which to implement custom 

algorithms.  The elements of the satellite hardware and 

software are organized by subsystems representative of those 

on real spacecraft.  The avionics, communications, 

propulsion, control, and state estimation subsystems are 

directly relevant to the ability of the spheres to perform 

coordinated maneuvers.  The following list summarizes key 

features of the testbed, from an end-user point of view: 

 

 The flight software is written in C, and runs on a Texas 

Instruments C6701 DSP at 167 MHz.   

 Analog sensors are sampled and digitized by an FPGA at 

12-bit resolution. 

 The communications subsystem consists of two independent radio frequency channels.  The 

sphere-to-sphere (STS) channel is used for communication between the spheres, and the sphere-

to-laptop (STL) channel is used to send command and telemetry data between the spheres and the 

laptop control station.   

Figure 1.  A SPHERES “satellite”. 
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 Actuation is provided by twelve cold-gas thrusters fed by a tank containing liquid CO2 propellant.  

Thruster forces are fixed, but pulse modulation to a time resolution of one millisecond can be 

used to produce effectively variable forces.   

 The position and attitude determination system has both inertial and external sensors.  

Gyroscopes and accelerometers are available for rapid updates to the state estimate over short 

time periods, and ultrasonic time of flight range measurements from wall-mounted beacons to the 

sphere surfaces are used to update the state estimate with respect to the laboratory reference 

frame. 

 A periodic control interrupt can be used for implementation of fixed or variable frequency control 

laws.  A suggested approach to the implementation of modular algorithms for use in the control 

interrupt is provided, and several useful modules are supplied with the GSP package. 

 An event-driven background task is available to complement and augment traditional estimation 

and control processes.  The combination of the task process with the estimation and control 

processes allows guest scientists significant freedom in algorithm design. 

 

The SPHERES testbed is a shared facility and guest scientists working at distributed locations hold a 

very diverse set of interests.  To satisfy the needs of these researchers, the MIT SPHERES team has 

developed a flexible interface to the software and hardware.  Guest scientists are encouraged to contact 

the MIT SPHERES team if the interface lacks a capability necessary for their investigations.  If we are 

unable to suggest solutions applicable to the current interface, additional functionality will be 

considered on a case by case basis for possible inclusion in a future release of the GSP interface 

package. 

 

Finally, it is worth mentioning that the title “Guest Scientist Program” is a misnomer, as the interface 

presented here is also universally used for the implementation of algorithms by the SPHERES team at 

MIT. 

2 Guest Scientist Program Overview 

2.1 Custom code development and test process 
The custom algorithm development and test process consists of three stages, utilizing three different 

development environments:  the GSP SPHERES simulation, the 3-DOF environment of the laboratory, 

and the 6-DOF environment of the International Space Station.  These three stages exhibit various 

levels of accessibility and fidelity, as depicted in Figure 2. 

 

Figure 2.  Accessibility vs. fidelity of GSP development and test stages. 

 

The high-level process by which guest scientists develop and code algorithms is outlined in Figure 3.  

Guest scientists independently develop custom algorithms, implement and test them using the MIT-

supplied GSP simulation.  The simulation provides the guest scientist with the means to compile and 

test custom source code, and to iterate the algorithm design as necessary to achieve desired results.  

Once acceptable performance has been demonstrated using the simulation, the custom source code is 

delivered to the MIT SPHERES team for verification on the flight hardware, before the algorithms are 

sent to the ISS.  The software interfaces to the simulation and to the flight hardware are identical, so 
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no additional interfacing work is required between each development step.  The development process 

is iterative, and feedback regarding algorithm performance is available to guest scientists at each stage.   

 

Figure 3.  Guest Scientist code development process 

 

The guest scientist begins the custom software development process by writing custom source code 

that adheres to the software interface described in this document.  This source code is then compiled 

and tested with the GSP SPHERES simulation.  This simulation is provided to the guest scientist as 

part of the GSP package.  Compiling the GSP simulation verifies syntactic correctness of the guest 

scientist’s code, and the application itself emulates basic operations of the testbed dynamics in either 

0-g or 1-g.  Once the code has been compiled and debugged by the guest scientist using the simulation, 

it can be sent to the SPHERES team at MIT for testing on flight hardware in the laboratory. 

2.1.1 Simulation requirements 
The SPHERES simulation requires a 32-bit x86-compatible computer running the Microsoft Windows 

2000 or XP operating system.  Microsoft Visual C++ 6.0 or better is required to compile code for the 

simulation, and The Mathworks’ MATLAB  is required to run the data reduction and plotting scripts 

included with the GSP package.   

 

A few of our optional utilities (such as estimation algorithms) employ math routines based on code 

created and commercially distributed by Numerical Recipes Software (NRS).  If you wish to use these 

utilities, you must purchase the “Numerical Recipes in C” package (available in both book and 

electronic form from http://www.numerical-recipes.com/) in order to obtain these math routines.  

Pricing varies from $65-120 for a single screen, single CPU license.  The standard NRS functions are 

incompatible with the operating system used on the SPHERES hardware, so the SPHERES flight code 

uses modified versions of the functions.  If you purchase the software, let us know and we will provide 

you with the modifications necessary to make the routines work in the SPHERES flight code 

environment. 

2.1.2 Laboratory 
The laboratory is used to verify the expected operation of developed algorithms on the flight hardware.  

The hardware used in the laboratory is identical to the ISS flight hardware, and realistic imperfections, 

uncertainties, unmodeled effects, and hardware limitations are present; however, in the laboratory, the 

presence of gravity restricts the movements of the spheres. 
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The laboratory testbed operates on a 1.2 m  1.2 m glass surface, mounted horizontally on a lab bench.  

The satellites are mounted to air carriages, which float on the glass surface by means of compressed 

gas.  This arrangement allows planar translation and single-axis rotation.  The ultrasound beacons used 

for range measurement are arranged in a configuration similar to that expected on the ISS.  

Imperfections and contaminants on the glass surface and a slight tilt of the tabletop relative to the 

gravity direction perturb the motion of the satellites on the surface.  Laboratory performance data 

returned to guest scientists include downloaded telemetry. 

 

It is also possible to arrange the laboratory testbed in a station configuration.  For these tests, one or 

more spheres are suspended in the test volume.  Although motion is limited, better sensor visibility 

and representative body-blockage effects make this technique useful for evaluating estimation 

algorithms in 3-D. 

2.1.3 International Space Station 
The micro-gravity environment of the ISS allows for maneuvers in 6 DOF.  The useable test space will 

most likely be a 1.5  1.5  2 m (5  5  6 ft) volume.  The most likely operating location for the 

testbed aboard the ISS is in the U.S. Node (the Unity module), where airflow rates are approximately 

3 cm/s (0.1 ft/s).  Based on the results of an experiment performed for us aboard the ISS, the 

perturbing effect of airflow onboard station is expected to be negligible.  Additional environmental 

data will be included in this document when the operating environment and disturbances are more 

fully characterized.  Accessibility to the testbed by the MIT SPHERES team and guest scientists is 

limited to occasional software updates.  Telemetry and video footage will be available for evaluating 

algorithm performance. 

2.2 GSP package contents 
The complete GSP development package may be downloaded from the SPHERES GSP homepage at 

http://ssl.mit.edu/spheres/gsp/.  The package consists of the following elements: 

 

 Pre-compiled SPHERES flight and simulation code, in the form of C++ objects 

 Header files describing the flight code application program interface. 

 A project template, including skeleton versions of gsp.c and gsp.h. 

 Example source code, in the form of maneuver, control, estimation, and mixer functions. 

 Template for HTML test descriptions (to be included in a later release) 

 Simulation environment executable programs (spheres_server.exe) 

 MATLAB  data reduction tools, including a plotting script (getStatePlots.m) and a pre-

parsed data conversion function (spheres_data_convert.p). 

 

The package is distributed in the form of a *.zip archive, for example, SpheresGSP_v1.0.zip.  

Detailed instructions for the use of the package contents are provided in Section Error! Reference 

source not found..  In addition, this document (spheres-gsp.pdf) is available for download. 

2.3 Delivery of custom code 

2.3.1 Laboratory 

Delivery to MIT of custom code for test in the laboratory must consist of a *.zip archive containing 

the following items: 

 

 Custom source code files for each sphere 
o gsp.c 

http://ssl.mit.edu/spheres/gsp/
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o gsp.h 

 Any additional custom source code required for the tests. 

 A description of the test, test parameters, and expected behavior, as well as simulation results 

such as a time history of the state estimate. 

 

2.3.2 International Space Station 

Delivery to MIT of custom code destined for the ISS must consist of a *.zip archive containing the 

following items: 

 

 Custom source code files for each sphere 
o gsp.c 

o gsp.h 

 Any additional custom source code required for the tests. 

 An HTML description of the test, test parameters, and expected behavior, for use by ISS 

crewmembers while conducting tests.  An official template for the HTML description will be 

made available in a later revision of the GSP interface package. 

 

Delivery of these items to MIT must be made significantly in advance of the scheduled uplink to the 

ISS.  Additional details regarding delivery of algorithms to the ISS SPHERES testbed will be provided 

later. 

2.4 Contacting the MIT SPHERES team 
Individuals interested in participating in the SPHERES program should contact the MIT SPHERES 

team at spheres-gsp@mit.edu.  This address may also be used for general inquiries.  Questions sent to 

this address or to individual SPHERES team members may be used or adapted for a Frequently Asked 

Questions (FAQ) list to be posted with answers on the SPHERES GSP home page.   

 

Each guest scientist will be assigned a point of contact on the SPHERES team.  Once custom source 

code has been verified using the GSP simulation, the guest scientist should deliver the elements 

specified in Section 2.3 to spheres-gsp@mit.edu.  Table 1 lists the members of the SPHERES team 

and their primary responsibilities.  The abbreviation PSI refers to Payload Systems, Inc. 

(http://www.payload.com), the sub-contractor responsible for construction and integration of the 

SPHERES flight hardware. 

 

Table 1.  The SPHERES team 

Name E-mail Primary responsibilities 

Prof. David Miller millerd@mit.edu Principle Investigator 

Dr. Alvar Saenz-Otero alvarso@mit.edu Lead Scientist, flight laboratory 

Swati Mohan smohan@mit.edu Reconfigurable control & estimation, Assembly 

maneuvering 

Jaime Ramirez ramirez@mit.edu Decentralized control 

Christophe Mandy newtoni@mit.edu Formation flight 

Jacob Katz jgkatz@mit.edu Control for assembly and formation flight 

John Merk  (AFSI) jmerk@aurora.aero Flight integration 

 

The SPHERES team uses a mailing list for official announcements, to facilitate efficient dissemination 

of important SPHERES-related information.  Please contact the SPHERES team if you wish to be 

added to this list. 

mailto:smohan@mit.edu
mailto:newtoni@mit.edu
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3 Sphere Physical Properties 

3.1 Body coordinate frame and external features 
The sphere body coordinate frame is defined as follows, and is shown in Figure 4.  

 

 The origin is located at the geometric center 

 +x points in the direction of the expansion port 

 +z points in the direction of the pressure system regulator knob 

 +y completes a right-hand system 

 

Figure 4.  An unwrapped view of a sphere, showing body frame coordinate system and physical features.  

 

Several features of the hardware that are visible in Figure 4, such as thrusters, sensors, and the 

pressure system, are discussed in detail later in this section. 

3.2 Mass and inertia properties 
Wet and dry mass and inertia properties were obtained using a CAD model and through testing in 

microgravity.  The masses of individual parts and of the entire assembly were predicted by the CAD 

model and verified empirically.  Wet mass values apply to a sphere with a full propellant tank, and dry 

mass values refer to a sphere with an empty tank.  Estimates of the mass properties of the SPHERES 

satellites are improved frequently, and the most recent values can be found in the SPHERES properties 

spreadsheet available on the SPHERES GSP web site (http://ssl.mit.edu/spheres/gsp/). 

3.3 Propulsion system 
Each satellite relies on a set of twelve on-off thrusters for management of both position and attitude.  

Each propellant tank contains 172 g of CO2, stored in liquid form at 860 psig.  A manual pressure 
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regulator is used to decrease the thruster feed pressure to between 0 and 35 psig, and the propellant 

becomes fully gaseous before being exhausted through the thrusters.  Detailed calibration data, such as 

force magnitudes for each thruster, are available on the SPHERES GSP web site 

(http://ssl.mit.edu/spheres/gsp/). 

 

3.3.1 Thrusters 
The sphere thruster geometry enables the production of almost pure body-axis force or torque using 

only two thrusters.  The twelve thrusters are arranged in six back-to-back pairs, enabling 6 DOF 

actuation.  A diagram of the sphere thruster configuration is shown in Figure 5. 

  

Figure 5.  Schematic view of the sphere thruster geometry.  

 

The thruster force and torque direction properties are listed in Table 2.  For a given thruster number, 

these data indicate the nominal directions of the force and torque that will be produced by firing that 

thruster.  For example, firing thruster number seven produces negative x-axis force and positive y-axis 

torque.   

 

Table 2.  Thruster geometry, in the body coordinate frame. 

Thr # Thruster position [cm] Nominal force direction Nominal torque direction 

 x y z x y z x y z 

0 -5.16 0.0 9.65 1 0 0 0 1 0 

1 -5.16 0.0 -9.65 1 0 0 0 -1 0 

2 9.65 -5.16 0.0 0 1 0 0 0 1 

3 -9.65 -5.16 0.0 0 1 0 0 0 -1 

4 0.0 9.65 -5.16 0 0 1 1 0 0 

5 0.0 -9.65 -5.16 0 0 1 -1 0 0 

6 5.16 0.0 9.65 -1 0 0 0 -1 0 

7 5.16 0.0 -9.65 -1 0 0 0 1 0 

8 9.65 5.16 0.0 0 -1 0 0 0 -1 

9 -9.65 5.16 0.0 0 -1 0 0 0 1 

10 0.0 9.65 5.16 0 0 -1 -1 0 0 

11 0.0 -9.65 5.16 0 0 -1 1 0 0 
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The force and torque directions in Table 2 can be used to determine the combination of thrusters 

required to produce force along or torque about each body axis.  The production of force or torque 

through a non-body axis can be achieved through a vector sum of the body-axis components.  Actual 

measured force and torque vectors will be made available through a function call in the flight software 

in a future release of the GSP interface. 

 

At a nominal feed pressure of 35 psig, each thruster delivers approximately 0.13 N of force.   

Variability from this value is small, but the force magnitude of each thruster is slightly offset from the 

nominal value.  These deviations will be measured in the laboratory, and thruster-specific measured 

forces will be made available through software.  Temporal deviations due to the number or 

combination of thrusters open at a particular time are more difficult to characterize, and the effects of 

these variations are currently treated as disturbances.  Guest scientists should specify if a feed pressure 

other than the default (35 psig) is required for a particular test.   

 

The on-off thrusters used on the spheres exhibit nonlinear, discontinuous, bounded behavior.  Each 

thruster consists of a solenoid valve and a nozzle.  When a thruster is commanded on, a voltage spike-

and-hold circuit activates and holds open the solenoid valve.  The thruster output force increases 

rapidly (<1 ms rise time) from zero to the steady-state thrust, following an initial delay of 

approximately 5 to 7 ms due to solenoid actuation dynamics.  The solenoid closes rapidly when the 

thruster is commanded off, causing the force to return to zero within a few milliseconds.  

 

The thrusters produce ultrasonic noise when in use, which interferes with the global position 

measurement system.  For this reason, the thrusters are automatically disabled whenever global 

measurements are in progress. 

4 Position and Attitude Determination 
The Position and Attitude Determination System (PADS) has inertial and global elements that may be 

combined to provide position and attitude information to the spheres in real-time.  The spheres PADS 

sensors fall into two categories:  inertial navigation sensors (rate gyroscopes and accelerometers) 

provide high-frequency measurements in the body coordinate frame; and global navigation sensors 

(ultrasonic rangefinders) provide low-frequency measurements of the sphere position and orientation 

with respect to the “global” (laboratory fixed) reference frame. 

4.1 Inertial Sensors 
The inertial sensor suite consists of three rate gyroscopes and three accelerometers.  These sensors are 

described in detail in the following sections. 

4.1.1 Rate gyroscopes 
Three Systron Donner BEI Gyrochip II single-axis rate gyroscopes are used to measure body-axis 

angular rates.  Analog to digital conversion results in measurable rates in the range of approximately 

±80 /s.  The gyroscopes are mounted in alignment with the body axes, at the positions listed in 

Table 3. 

 

Table 3.  Rate gyroscope mounting locations in the sphere body frame. 

Sensor Location (body frame) [cm] 

 x y z 

x-axis gyro  3.10 6.39 

y-axis gyro -5.49  -3.24 

z-axis gyro -5.49 3.24  
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Additional details regarding the performance of the gyroscopes, as integrated into the SPHERES 

hardware, are given in Table 4. 

 

Table 4.  Rate gyroscope performance properties 

Quantity Value Units 

Measurement range  83 /s 

Measurement resolution 0.0407 /s 

Noise (0 – 100 Hz, 1 ) < 0.05 /(s Hz
1/2

) 

 < 0.71 /s RMS 

Low pass filter* 300 Hz 

*Each rate gyroscope has a first-order single-pole RC filter at 300 Hz. 

 

The frequency response of the gyroscope, without the additional filter at 300 Hz, is shown in Figure 6. 

 

 

Figure 6.  Frequency response of the BEI QRS14 rate gyroscope used in the SPHERES satellites.[ 2] 

 

4.1.2 Accelerometers 
Three Honeywell QA-750 single-axis accelerometers are used to measure linear acceleration.  Analog 

to digital conversion results in a resolution of 1.23 10
-4

 m/s
2
 (12.5 g) per count.  The accelerometers 

are aligned parallel to, but displaced from, the body axes.  The accelerometer mounting positions are 

listed in Table 5.  The component of measured acceleration due to nonzero angular rates must be 

accounted for in the estimation algorithm. 
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Table 5.  Accelerometer mounting locations in the sphere body frame. 

Sensor Location (body frame) [cm] 

 x y z 

x-axis accelerometer 5.19 2.17 3.27 

y-axis accelerometer -2.66 3.35 3.30 

z-axis accelerometer 3.28 -4.37 3.35 

 

Additional details regarding the performance of the SPHERES accelerometers, as integrated into the 

SPHERES hardware, are given in Table 6. 

 

Table 6.  Accelerometer performance properties. 

Quantity Value Units 

Measurement range  0.251 m/s
2
 

Measurement resolution 1.23 10
-4

 m/s
2
 

Bandwidth < 200 Hz 

Noise (0 – 10 Hz) < 6.86 10
-5

 m/s
2
 RMS 

Noise (10 – 500 Hz) < 6.86 10
-4

 m/s
2
 RMS 

Low pass filter* 300 Hz 

*Each accelerometer has a first-order single-pole RC filter at 300 Hz. 

 

The frequency response of the accelerometers, without the additional filter at 300 Hz, is shown in 

Figure 7. 

 

Figure 7.  Frequency response of the Honeywell QA-70 accelerometer used in the SPHERES satellites.[7] 

 

4.2 Global sensors 
The PADS global metrology system allows each sphere to measure its position and attitude with 

respect to the global reference frame fixed to the laboratory or ISS. This system provides range 

measurements to points on each sphere from five external beacons mounted at known locations on the 

periphery of the test volume.  The range measurements are calculated based on the times of flight of 

ultrasonic signals that are emitted from the beacons.  The thrusters generate significant ultrasonic 

noise, so they must be turned off during global PADS measurements.   
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4.2.1 Global update process 
The “global update” process is initiated when a sphere flashes an omni-directional infrared 

synchronization signal.  This infrared signal is received by the other spheres and by the global 

beacons.  In response to the infrared signal, the satellites turn off their thrusters, and each beacon waits 

a specified time and then transmits a set of ultrasonic pulses.  The ultrasonic pulses are detected using 

threshold detection by the receivers that have a line of sight to that beacon.  Times-of-flight are 

computed based on the difference in time between reception of the infrared and ultrasonic 

transmissions at each sphere receiver.  These times-of-flight may be used along with knowledge of the 

beacon locations and the sphere geometry, to estimate the sphere position and attitude.  The range 

measurements are shown in Figure 8 as lines between the beacon transmitters and the ultrasound 

receivers mounted on the sphere surface.   

 

 

Figure 8.  The SPHERES global metrology system.  Range measurements are portrayed as lines between 

external beacons and the sensors mounted on the sphere surface. 

 

In addition to the five externally mounted ultrasonic beacons, each satellite is equipped with a single 

body-mounted ultrasonic transmitter that may be used to determine direct inter-satellite range and 

bearing.  A satellite receiving a signal from one of these onboard beacons can directly measure the 

relative distance and tip/tilt angles of the transmitting satellite. 

 

Each external or onboard beacon waits a specified time after the infrared flash before transmitting 

ultrasound.  The beacon timing is summarized in Table 7.  The wait time of each onboard beacon can 

be specified from the flight software.  Acceptable values of n in Table 7 are 0, 1, 2, 3, 4, 5, 6, or 7, but 

care must be taken to ensure that only one beacon using a particular beacon number is powered on at 

any given time, in order to avoid ultrasound interference. 

 

Table 7.  Global update timing. 

Beacon number Beacon location Wait time [ms] 

0 external 10 

1 external 30 
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2 external 50 

3 external 70 

4 external 90 

5 sphere 1 10+20n* 

6 sphere 2 10+20n * 

7 sphere 3 10+20n * 

*Default off, with software selectable state. 

 

By default, each sphere turns off its thrusters for 110 ms (or longer if the onboard beacons are in use) 

during each global update, in order to avoid corrupting the ultrasound signals sent by the external 

beacons.  These periods of zero control authority should be considered during the algorithm design 

process. 

4.2.2 Ultrasound sensor geometry 
The spheres global ranging system uses pulses of 40 kHz ultrasound.  Each sphere has 24 ultrasound 

sensors, arranged four per face on each of six faces as shown in Figure 9.   

 

Figure 9.  Ultrasound sensor geometry and numbering scheme. 

 

The ultrasound sensor locations are listed in Table 8, organized by face.  The faces are numbered 0 

through 5, in the order +x, +y, +z, -x, -y, -z.  The receiver numbering scheme presented in the table is 

used throughout the flight code to distinguish between the sensors. 

 

Table 8.  Ultrasound sensor geometry and numbering scheme. 

Face Receiver  Location (body frame) [cm] 

label number  x y z 

+x 

0  10.23 -3.92 3.94 

1  10.23 3.92 3.94 

2  10.23 3.92 -3.94 

3  10.23 -3.92 -3.94 

+y 

4  3.94 10.23 -3.92 

5  3.94 10.23 3.92 

6  -3.94 10.23 3.92 
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7  -3.94 10.23 -3.92 

+z 

8  -3.92 3.94 10.26 

9  3.92 3.94 10.26 

10  3.92 -3.94 10.26 

11  -3.92 -3.94 10.26 

-x 

12  -10.23 3.92 -3.94 

13  -10.23 3.92 3.94 

14  -10.23 -3.92 3.94 

15  -10.23 -3.92 -3.94 

-y 

16  -3.94 -10.23 3.92 

17  3.94 -10.23 3.92 

18  3.94 -10.23 -3.92 

19  -3.94 -10.23 -3.92 

-z 

20  3.92 -3.94 -10.23 

21  3.92 3.94 -10.23 

22  -3.92 3.94 -10.23 

23  -3.92 -3.94 -10.23 

 

These values are available through functions in the flight software. 

 

In addition, each sphere is equipped with a single ultrasonic transmitter, for use in direct ranging 

between the spheres.  This onboard beacon is centrally positioned on the -x face, on the body frame 

x-axis at a distance of -10.23 cm from the geometric center. 

 

The ultrasound receivers used on the spheres are directional (60° full-cone), and are aligned with bore 

sight normal to their mounting surfaces.  The directionality properties of the sensors are shown in 

Figure 10. 

 

Figure 10.  Sensitivity properties for the Murata MA40S4R ultrasound receiver.[9] 

 

5 Software Overview 
The GSP interface to the SPHERES flight software consists of two categories of interface functions:  

primary and secondary.  In short, the Guest Scientist must provide primary functionality, and may use 

secondary functionality.  There are several primary functions, all of which are all located in the file 

gsp.c.  The primary functions are where the interface to the existing SPHERES code takes place, 

and the code internal to these functions may be freely modified by the guest scientist.  Secondary 

functions are those that are available for use by the guest scientist, but may not be modified.  The 

secondary functions are described in the Application Program Interface (API) section of this 
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document, and the prototypes of the secondary functions may be found in the *.h files included with 

the GSP interface package. 

 

The primary functions can be organized into three groups:  initialization, periodic, and event-driven.  

Initialization functions are used to set program and test-specific values.  Periodic functions may be 

used for fixed-frequency control algorithms, and to collect and process sensor data.  Event-driven 

tasks provide the guest scientist with a means to implement algorithms that do not fit conveniently into 

the framework of the periodic processes.  In addition, the task provides a means for performing long-

term, non-real-time, or low-priority computation.  The function interface (the arguments) to each of 

the primary functions is fixed, but the guest scientist can choose to leave empty any functions that are 

not required to implement the set of algorithms being tested. 

 

Throughout this section, references will be made to specific primary and secondary interface 

functions.  In general, primary functions will be described at length, while secondary functions will be 

described in passing.  A complete list and description of secondary functions can be found in the 

Application Program Interface section of this document. 

5.1 Programs, tests, and maneuvers 
SPHERES operations are divided into three hierarchical levels:  programs, tests, and maneuvers.  Each 

program is associated with a particular executable file; therefore, each set of guest scientist source 

code files submitted will constitute a program.  A program begins when an executable is uploaded into 

onboard memory, a satellite is powered on, or the CPU is reset.  Each program consists of one or more 

tests.     

 

Each test is a standalone experiment, and is accompanied by a description file on the laptop.  Once a 

program is running, a test commences when explicitly commanded by the operator through the laptop 

control station.  The test ends either when the software signals its completion or when aborted by the 

operator through the laptop interface or the hardware control panel.  The execution of tests is 

controlled by the operator; tests may be run multiple times and in arbitrary order, and programs must 

be written to take this operational flexibility into account.  When a test completes, the test conductor is 

notified through the laptop, and the satellites drift freely until the next test is commanded.  Test 

completion is signaled through software by a call to the function ctrlTestTerminate(…).  Guest 

scientist code must call this function to explicitly end each test.  The current test number and elapsed 

test time are available at any time through the functions ctrlTestNumGet() and 

ctrlTestTimeGet(), respectively.  The test time counters on the separate SPHERES satellites are 

synchronized to within one millisecond (and reset to zero) whenever a new test command is received. 

 

Each test may in turn consist of a linear or non-linear sequence of maneuvers.  Maneuvers are a 

convenient bookkeeping convention, and the current maneuver number is automatically downloaded 

in the telemetry stream once per second in a state of health packet.  The concept of the maneuver is 

intended to assist guest scientists with implementing complex sequencing within a single test.  

Maneuver numbers and elapsed maneuver times are available to the guest scientist through the 

functions ctrlManeuverNumGet() and ctrlManeuverTimeGet(), respectively.  The 

function ctrlManeuverTerminate() terminates the current maneuver and increments the 

maneuver number automatically.  Similarly, the function ctrlManeuverNumSet(…) may be used 

to terminate the current maneuver and proceed to a specified maneuver number.  Guest scientist code 

may call one of these functions to explicitly end each maneuver. 

 

Maneuvers can be used to separate a complex motion into a series of simpler movements.  For 

example, a test may begin with each sphere translating from its deployment location to a specified 
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initial position suitable for the test.  In this maneuver, the desired positions could simply be fixed, and 

a simple PID control law on each sphere could be used to perform the translation.  When all the 

spheres have arrived at their desired locations, a new maneuver begins wherein the spheres perform a 

coordinated formation rotation using a more complex decentralized control law and a distributed 

estimation scheme.  Maneuvers may be defined by a specific trajectory, control law, estimation 

algorithm, pulse modulation scheme, or any other parameter.   

 

Finally, it is requested that the final maneuver in each test null any residual velocity, in order to reduce 

drift after the test terminates.  This saves time by allowing the operator to proceed to the next test 

without manually capturing and repositioning the satellites. 

5.2 Summary of primary interface functions 
Seven functions and one header file comprise the primary interface to the existing SPHERES flight 

software.  These functions are listed in Table 9, along with short descriptions of their uses.   

 

Table 9.  Typical uses for the primary interface functions. 

Function name Description 

gspPadsInertial(…) Perform state estimation based on inertial data.  Called periodically. 
gspPadsGlobal(…) Record global data.  Called at the end of each beacon’s transmission 

period. 
gspControl(…) Apply control laws and set thruster on-times.  Called periodically. 
gspTaskRun(…) Event-driven task for estimation, control, and communications.  

Called whenever a masked event occurs. 
gspIdentitySet(…) Set satellite identity.  The first primary interface function called. 
gspInitProgram(…) Initialize communications and other subsystems.  Must contain certain 

initialization functions for multi-sphere operations to work correctly. 
gspInitTask(…) Specify task trigger mask. 
gspInitTest(…) Perform test-specific configuration.  Called prior to starting each test. 

 

Each of these functions has pre-defined arguments, but the function contents and any internal sub-

functions may be freely designed and written by the guest scientist, with the exception of 

gspIdentitySet(…) and gspInitProgram(…), which must contain certain function calls that 

set the sphere identity and other important properties.  The inputs and outputs of each interface 

function are pre-defined, and each function is called based on one or more trigger events, as shown in 

Figure 11.  Each satellite has a unique copy of the source file gsp.c that contains these functions, and 

a unique copy of the header file gsp.h, also available for modification as desired by the guest 

scientist. 
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Figure 11.  Data flow and trigger events for user processes. 

 

5.2.1 Priority, pre-emption, and data integrity 
The CPU supports several levels of process priority.  In order from highest to lowest priority are 

hardware interrupts, software interrupts, and background tasks.  The primary interface functions 

operate at several levels of priority, as shown in Table 10. 

 

Table 10.  Software process priority for primary interface functions. 

Priority Process description Primary interface function Trigger type 

(highest) Propulsion hardware management -- Periodic 

 

Inertial sensor sampling -- Periodic 

Control gspControl(…) Periodic 

Inertial data processing gspPadsInertial(…) Periodic 

Global data processing gspPadsGlobal(…) Event-driven 

Communications -- Event-driven 

(lowest) Task (control, estimation, etc) gspTask(…) Event-driven 

 

Because the flight software is a multi-process, multi-priority application, issues of data integrity arise 

when accessing shared memory from multiple processes.  In particular, it is possible for a higher-

priority function to interrupt a lower-priority function while the lower-priority function is engaged in a 

write operation to shared memory.  If the higher-priority process reads that memory, it may read a 

corrupt combination of old and new data.  Similarly, if the higher-priority process interrupts the lower-

priority process during a low-priority read, the lower-priority process will read a corrupted 

combination of old and new data. 
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In order to guarantee data integrity, users wanting to directly share variables between two processes 

(e.g. the task and control interrupt) must use the atomic_memcpy(…) function when reading or 

writing multi-element (e.g. array) data from within the lower-priority process.  Accessing the shared 

data from the higher-priority process does not require special treatment.  All secondary interface 

functions automatically guarantee well-defined memory behavior. 

 

Due to limitations with the DSP/BIOS operating system used on the SPHERES hardware, memory 

cannot be dynamically allocated from within an interrupt.  This means that calls to memory handling 

functions such as malloc(…) and dealloc(…) must be used only in the gspInitProgram() 

function. 

5.3 State vector 
Table 11 shows the SPHERES convention for state vector elements.  This convention is followed 

exclusively in the following standard utilities: 

 

 Standard estimator 

 Standard controllers 

 Telemetry data reduction script and plotting utilities 

 Background telemetry 

 

Guest scientists may use their own state vector definitions, but should be aware that their resulting 

code will be incompatible with the standard utilities provided by the SPHERES team.  To maintain 

compatibility with the standard utilities, it is recommended that custom state vectors consist of the 

elements given in Table 11 appended with custom state quantities. 

 

Table 11.  State vector suggested elements and order. 

Array position Defined index Element Units 

0 POS_X Position, x-axis
1
   m 

1 POS_Y Position, y-axis m 

2 POS_Z Position, z-axis m 

3 VEL_X Velocity, x-axis
2
  m/s 

4 VEL_Y Velocity, y-axis  m/s 

5 VEL_Z Velocity, z-axis  m/s 

6 QUAT_1 Quaternion, vector component 1
3
  normalized 

7 QUAT_2 Quaternion, vector component 2 normalized 

8 QUAT_3 Quaternion, vector component 3 normalized 

9 QUAT_4 Quaternion, scalar component normalized 

10 RATE_X Angular velocity, x-axis
4
  rad/s 

11 RATE_Y Angular velocity, y-axis  rad/s 

12 RATE_Z Angular velocity, z-axis  rad/s 
1 . The position is expressed with respect to the global frame. 
2 . The velocity is expressed with respect to the global frame, in components of the global frame. 

3 . The quaternion is expressed as the rotation from the global frame to the body frame. 

4.  The angular rate is expressed with respect to the global frame, in components of the body frame. 

5.4 Naming conventions 
The functions and variables in the SPHERES flight code follow (for the most part) the SERTS naming 

conventions, which can be found online at http://www.ee.umd.edu/serts/bib/unpublished/naming.pdf.  
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For purposes of convenience, the conventions most applicable to the ensuing discussion are repeated 

here.   

 

Global variables begin with a software element identifier specifying the functional group to which the 

variable belongs; e.g., prop_someVariable could be a global variable that is used by the 

propulsion system.  The definition of this variable would be found in the header file corresponding to 

its identifier, namely, prop.h.  Similarly, exported (global) functions begin with an identifier; e.g., 

padsGlobalPeriodSet(…) is used to set the period of the global update sequence, and may be 

called by any process.  The header for this function can be found in pads.h.  Table 12 lists the pre-

defined software element identifiers. 

 

Table 12.  Software element identifiers. 

Identifier Subsystem 

comm Communications 
ctrl Control 
gsp Guest Scientist Program 
math Mathematics 
pads Estimation 
prop Propulsion 
sys System 

 

Note that the primary interface functions (see Table 9) begin with the gsp identifier.  Functions not 

beginning with gsp may be called by guest scientist code, but may not be modified by the guest 

scientist. 

 

Local variables are not preceded by an element identifier.  In general, variables begin (after the 

identifier, if applicable) with a lowercase letter, and functions begin (after the identifier, if applicable) 

with an uppercase letter.  When using static or global variables, be certain that you reset variables to 

initial values, if required, in gspInitTest(…) or elsewhere, as appropriate. 

5.5 Function description conventions 
Functions descriptions are presented with the function name and return type, a description, and a list of 

argument types.  Each argument is numbered for easy reference.  For example, 

 
int demoFunction(…) 

 An example used to demonstrate the function description conventions used in the SPHERES GSP 

interface document.  As can be seen below, this function has two input arguments, the first of type 

char*, and the second of type unsigned int.  From the function name, it can be seen that the 

return value is of type int. 

 1 char* This might be passed the address of a character string, for example. 

 2 unsigned This might be passed the length of that character string. 

 

Primary interface functions are surrounded by triple lines on all sides, and secondary functions are 

surrounded by double lines on the sides and single lines on top and bottom. 

5.6 Individually customized software access 
The GSP interface has been designed to provide a simple, flexible interface for SPHERES 

experiments.  Every effort has been made to anticipate the needs of researchers in the fields of control, 
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estimation, and autonomy.  Researchers should contact the SPHERES team if they require specialized 

access to SPHERES hardware or software, beyond the interface described here.  Feasibility of any 

interface customization is considered on an individual basis. 

6 Estimation 
The GSP interface provides the guest scientist with the ability to implement a custom estimation 

scheme to be used in the determination of absolute and relative position, velocity, attitude, and angular 

rate.  The estimation interface consists of three processes:  two measurement-activated processes and 

the configurable event-driven task.  This section describes the measurement-activated processes 

gspPadsInertial(…) and gspPadsGlobal(…); the task is described separately in Section 8.   

6.1 Measurement-triggered functions 
The inertial measurement-based process gspPadsInertial(…) occurs at a high fixed frequency, 

while the global measurement-based process gspPadsGlobal(…) occurs less frequently, whenever 

global metrology measurements are received during a global update.  More precisely, 

gspPadsGlobal(…) is called at the end of each beacon’s transmission window during global 

updates whether there are meaningful (non-zero) data or not. 

 

Custom estimation algorithms may be implemented through the functions gspPadsInertial(…) 

and gspPadsGlobal(…), which are called when new inertial and global data, respectively, are 

available.  The arguments of these functions are pre-defined, but guest scientists are free to modify the 

function contents as desired, and to pass data between functions using global memory.   

 

A limitation to the use of these functions is that all computation must be completed within much less 

than one millisecond.  This is necessary because these processes are actually launched by a 1 kHz 

hardware interrupt, and concurrently running two instances of a single interrupt will cause undesired 

behavior.  To avoid this problem, these two functions should be used only to copy data and/or to 

perform simple estimation tasks.  Complicated or time-consuming tasks, such as running a Kalman 

filter, can be easily accommodated by launching a task process from within gspPadsInertial(…) 

or gspPadsGlobal(…).  An example of this approach is provided in the gsp.c template file 

included with the simulation.   

 

Included estimation algorithms can be found in the sub-directory standard\estimation\. 

6.1.1 Inertial 
A high-priority sensor sampling routine reads and archives raw accelerometer and gyroscope 

measurements at a user-definable frequency.  These archived measurements are then passed to the 

lower-priority data processing function gspPadsInertial(…), which is also called at a user-

definable frequency, to interpret the archived inertial data. 

 

gspPadsInertial(…) 

 The periodic estimation interrupt, called to interpret new inertial sensor data.  A primary interface 

function. 

 1 IMU_sample* (accel) The address of the raw accelerometer counts. 

 2 IMU_sample* (gyro) The address of the raw rate gyroscope counts. 

 3 unsigned (num_samples) The number of samples each of accelerometer and 

gyroscope counts. 
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The rate at which inertial sensors are sampled and inertial data are processed can be changed with the 

command padsInertialPeriodSet(…).  Before setting the inertial sampling period, memory 

space must be set aside to store the samples.  This is accomplished using 

padsInertialAllocateBuffers(…). 

 

The maximum allowed inertial sensor sample frequency is 1 kHz, corresponding to a 1 ms period.  

Calibration utilities that provide sphere-specific calibration and scaling factors will be provided with a 

future release. 

6.1.2 Global 

The function gspPadsGlobal(…) is called at 20 millisecond intervals during global updates, once 

at the end of each beacon transmission window.  Because processing of global data is time-consuming, 

it is recommended that gspPadsGlobal(…) be used to archive the beacon data, and the task be 

used to perform the estimation using those data. 

 

gspPadsGlobal(…) 

 A primary interface function that is called whenever new global metrology measurements are 

available.  Called at the end of each beacon’s transmission window. 

 1 unsigned (beacon) The beacon number. 

 2 beacon_measurement_matrix (measurements) The range measurements from that 

beacon to each receiver. 

 

Global updates may be configured as either periodic or on-demand.  Periodic global updates are 

configured using the function padsGlobalPeriodSet(…).  Because the thrusters create 

ultrasonic noise, they are automatically disabled during global updates.  It is therefore important to 

balance the desire for frequent global updates with the resulting loss and irregularity of control 

authority.  It is good practice to designate only one sphere to request global updates, as multiple 

spheres requesting global updates may result in unexpected behavior and excessive thruster off-time. 

 

Instead of performing periodic global updates automatically, a routine may explicitly request updates 

at particular times.  A call to the function padsGlobalTriggerNow(…) results in an immediate 

infrared flash, initiating a single instance of the global update process.  If this function is called when 

periodic global updates are being used, the next periodic update will occur one update period after the 

explicitly requested flash, rather than one period after the last periodic flash. 

 

Low-level functions ensure that only one global update occurs at a time, in order to prevent corruption 

of range data.  Therefore, periodic or on-demand updates will be cancelled if they are scheduled to 

begin during an update already in process.  Global updates can be performed at a maximum of 9 Hz 

when using only the five external beacons, and 5.8 Hz when using all 8 beacons.  By default, the 

global update is performed at 2 Hz. 

6.2 Internal state estimate 
The internal (MIT) estimator algorithm determines the position, velocity, attitude quaternion, and 

angular rate of the sphere, at a low update rate.  The internal estimator may not be disabled, but the 

guest scientist may choose to ignore the internal state estimate and use the results generated by a 

custom estimator instead.  The state vector used by the standard estimator follows the state element 

convention described in Section 5.3.  The current value of the internal state estimate may be retrieved 

at any time using the function padsStateGet(…).   
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Guest scientists unconcerned with the details of the estimation process (e.g. interested only in control 

or autonomy experiments) may use estimation functions provided by the MIT SPHERES team. 

 

The internal state estimate functionality has not yet been implemented. 

6.3 Onboard direct-ranging beacons 
The onboard beacons are disabled by default, in order to minimize thruster off-time.  The onboard 

beacons may be enabled or disabled at any time using the function padsBeaconNumberSet(…).  

Note that under the current implementation, enabling the beacon on any one sphere does not 

automatically increase the thruster quiet time on any of the satellites.  The number of active beacons 

registered in the memory of each satellite must be explicitly updated using the function 

padsInitializeFPGA(…) locally on each satellite.  This procedure may be simplified or 

automated in the future. 

7 Control 
Two separate processes are available for implementing control algorithms.  A periodic interrupt 

process is available for performing repetitive, time-dependent operations such as following a curved 

trajectory and setting thruster on-times, and an event-driven background task is available for 

performing long-term, low-priority computation such as future trajectory planning.  Both of these 

processes have fixed arguments, but guest scientists are free to use global memory to store or 

exchange additional data between any of the GSP processes.  The task provides great freedom in 

algorithm design, while the control interrupt provides a simple structured interface.  The task is 

described in Section 8. 

 

For researchers primarily concerned with estimation, autonomy, or limited aspects of control 

problems, the MIT SPHERES team provides a standard set of modular control functions that can be 

called in the control interrupt to perform simple maneuvers.  Development of these utilities is ongoing, 

and additional modules will be made available as they are developed. 

7.1 Control interrupt interface 
The control interrupt, consisting of the primary function gspControl(…) and some background 

housekeeping routines, is typically used to implement a periodic control law, with the result of setting 

thruster on and off times for the next control period.   The period of the control interrupt may be set 

and queried using the functions ctrlPeriodSet(…) and ctrlPeriodGet(), respectively. 

 

gspControl(…) 

 The periodic control interrupt, intended for implementing fixed-frequency control laws and setting 

thruster on-times.  A primary interface function. 

 1 unsigned (test_number) The current test number. 

 2 unsigned (test_time) The elapsed test time. 

 3 unsigned (maneuver_number) The current maneuver number. 

 4 unsigned (maneuver_time) The elapsed maneuver time. 

 

The MIT SPHERES team has developed a set of interface guidelines that facilitate rapid test 

development and the simple and effective reuse of existing code.  Following these guidelines is not 

necessary, but doing so assists in operational organization, and allows the guest scientist to use a 

supplied set of modular algorithm blocks that satisfy common algorithmic needs.  These interface 

guidelines are described in the following sections. 



 25 

7.2 Implementation suggestions 
The guidelines provided in this section are suggestions that are intended to assist guest scientists in the 

implementation of algorithms.  These guidelines are motivated by algorithmic, operational, and 

simplicity considerations based on the experiences of the SPHERES team, but they are not 

development rules.  Guest scientists are free to design the contents of gspControl(…) as desired. 

 

The algorithmic processes that occur within a particular maneuver can often be broken down into the 

following categories: 

 

 Command:  generate a reference quantity, for example the current desired state on a particular 

trajectory.  

 Control law:  application of a control law to the state and reference quantities, leading to desired 

force and torque or V. 

 Mixer:  calculation and assignment of thruster on-times based on force and torque or V, thruster 

geometry, and other considerations. 

 Termination:  compare current conditions to some set of maneuver termination conditions, and 

signal maneuver completion when the termination conditions are met.  

 

Some of these maneuver elements may change during a test, and others may not.  Implementing each 

element in a separate algorithm module simplifies the development process, and enhances the ability 

to make incremental changes when problems arise.  For example, using a well-tested mixer module 

during the debugging of a new control law module reduces the possibility that an algorithmic error in 

the mixer module is to blame for any unexpected behavior. 

 

A suggestion for the organization of maneuvers is shown in Figure 12.  When a test begins, the 

maneuver number is set to one by the underlying code.  The periodic function gspControl(…) can 

be written with a switch statement such that each time it is called, the command, control law, mixer, 

and terminator corresponding to the appropriate maneuver number are called.  When the terminator 

signals that the maneuver is complete, the maneuver number increments (automatically) and the next 

call to gspControl(…) calls the functions corresponding to the next maneuver number.  This 

process of terminating and incrementing the maneuver number continues until the test is complete. 

 

Figure 12.  Suggested process diagram for a sequence of maneuvers. 

 

A simple, single-maneuver example of how gspControl(…) might look is shown in Figure 13.  In 

this example, the command function is yourCommandFunction(…) (i.e. a function provided by 
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the guest scientist), the attitude and position control laws, are ctrlAttitudeNLPDwie(…) and 

ctrlPositionPD(…), respectively, and the mixer is ctrlMixSimple(…).  The terminator 

function ctrlTerminateTestTimed(…) ends the test after a specified time has elapsed. 

 

void gspControl(..., unsigned int maneuver_time, ...) 

{ 

   // create state vector arrays 

   static state_vector    actual, desired, error; 

   static control_vector  control; 

   static prop_time       thrusters; 

 

   // assuming state estimate is updated elsewhere... 

   memcpy(actual, my_state_estimate, STATE_LENGTH); 

 

   // get the current desired state from your own algorithm 

   yourCommandFunction(maneuver_time, desired); 

 

   // determine the state error 

   findStateError(error, actual, desired); 

 

   // fill out control array (real gains would not be 1.0) 

   ctrlAttitudeNLPDwie(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, error, control); 

   ctrlPositionPD(1.0, 1.0, error, control); 

 

   // determine when to turn thrusters on and off 

   ctrlMixSimple(&thrusters, control, state,  

                 10, ctrlPeriodGet(), FORCE_FRAME_INERTIAL); 

 

   // command the thruster on and off times 

   propSetThrusterTimes(&thrusters); 

 

   // end the test 60 seconds into the maneuver 

   ctrlTerminateTestTimed(maneuver_time, 60000, TEST_RESULT_NORMAL); 

} 

Figure 13.  Example contents for a simple gspControl(…). 

 

The various secondary interface functions used in Figure 13 are described in Appendix A. 

7.3 Thruster actuation 

7.3.1 Commanding actuation 

Typically, a control law generates continuous force, torque, or V requests.  These requests must be 

converted into individual thruster requests (forces, for example) based on the thruster geometry.  

Because the thrusters are on/off actuators, a pulse modulation algorithm must be employed to convert 

the forces into discrete on and off times for each thruster.  Functions fulfilling this purpose are referred 

to as “mixers.”  The function ctrlMixSimple(…) is an example of a typical mixer utility.  This 

function calls propSetThrusterTimes(…) to actually assign the thruster on and off times to the 

propulsion subsystem.   

 

Standard mixers can be found in the directory standard\mixers\. 
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7.3.2 Calibration 
Steady-state deviation in the force magnitude produced by each thruster from the nominal value has 

been measured in the laboratory, and calibration data are recorded in the flight software.  The presence 

of the calibration values allows the guest scientist to use an idealized model for thruster forces, and the 

same idealized model for each sphere.  The calibration data may be applied to the on-time values 

determined by the control algorithm before the pulse modulation algorithm is applied.  The interface to 

calibration functions will be included in a future revision. 

7.4 Standard control modules 
For guest scientists who are not concerned with writing control algorithms, the SPHERES team 

provides standard control modules to implement simple control laws.  Examples of these can be found 

in the sub-directory standard\control\. 

8 Event-driven task 
The purpose of the event-driven task is to provide guest scientists with a means to implement 

algorithms that do not fit conveniently into the framework of the periodic control and measurement-

based estimation processes.  In addition, the task provides a means for interpreting received 

communications data, and performing long-term, non-real-time, or low-priority computation.  Task 

algorithms are implemented in the primary function gspTaskRun(…).  

 

gspTaskRun(…) 

 An event-driven primary function.  Runs whenever a masked event occurs.  The trigger mask is set 

using taskTriggerMaskSet(…). 

 1 unsigned (gsp_task_trigger) The trigger type, an element of Table 13. 

 2 unsigned (extra_data) An extra datum, the meaning of which depends on the type of 

trigger event. 

 

This function is called whenever an event occurs that matches one of the events specified in a trigger 

event mask.  The trigger event mask may be specified at any time using the function 

taskTriggerMaskSet(…), and each call to this function replaces the previous value of the trigger 

mask.  Multiple triggers can be placed in the mask, resulting in calls to gspTaskRun(…) whenever 

one of the masked events occurs.  Valid trigger events are listed in Table 13. 

 

Table 13.  Valid trigger events for gspTask(…). 

Trigger event type Occurs when… Extra data 

CTRL_DONE_TRIG After each call to gspControl(…). Test number 

MESSAGE_TX_ACK_TRIG A packet acknowledgement is received. Packet number 
DATA_TX_DONE_TRIG Data transmission thought to be complete. Transaction ID 
DATA_RX_DONE_TRIG New data have been received. Transfer tag 
PADS_GLOBAL_START_TRIG At the start of each global update period. (Undefined) 
PADS_GLOBAL_BEACON_TRIG New range data are available. Beacon number 
PADS_INERTIAL_TRIG New inertial data are available. Number of samples 
TASK_TIME_TRIG The task timer reaches the specified time. (Undefined) 
COMM_GSP_TRIG On debug messages (?). Debug command 
TEST_START_TRIG At the start of each test. Test number 
GSP_USER_TRIG taskPostUserTrigger(…) is called. User-defined 
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The suggested approach for handling multiple trigger types is to place a switch statement inside 

gspTaskRun(…) that determines from the first argument which type of event occurred, and acts 

accordingly.  The meaning of the second argument to gspTaskRun(…) depends on the type of 

triggering event.  For example, for an event caused by a PADS_GLOBAL_BEACON_TRIG, the 

second argument tells the beacon number.  

 

The primary function gspInitTask(…) runs during task startup.  This function is used only to set 

the task trigger mask with taskTriggerMaskSet(…). 

 

gspInitTask() 

 An initialization routine for the GSP task function.  Runs once, at startup. 

 

The functional flow of the task process can be visualized by the flow diagram in Figure 14.  The task 

process begins only once, after being initialized through gspInitTask(…).  After initialization, it 

enters an infinite loop wherein events are compared against the mask as they occur.  When an event 

occurs that is in the mask, gspTaskRun(…) executes.  After completion of gspTaskRun(…), the 

process waits for the next masked event to occur. 

 

Figure 14.  Task process flow diagram. 

 

9 Communications 

9.1 Overview 
Two separate channels are available for command and telemetry communications.  The sphere-to-

sphere (STS) channel is used to pass information between two or more spheres, and the sphere-to-

laptop (STL) channel is used for the transfer of commands from and telemetry to the laptop control 

station.  Relevant properties of the STS and STL communications channels are given in Table 14. 

 

Table 14.  Communications system properties 

Property sphere-to-sphere (STS) sphere-to-laptop (STL) 

Radio frequency (MHz) 916.5 868.35 
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Packet data size (bytes) 32 32 

Bandwidth (packets/s) 70 70 

 

It is important to ensure that the available communications capacity on each channel is not exceeded 

since data may be lost.  The rate at which each buffer is emptied depends on the data rate of the 

channel that it serves. 

 

Two types of communication occur on each channel: background and foreground.  Background refers 

to the automatic, periodic transmission of standard information, such as state and basic housekeeping 

data.  Foreground refers to data explicitly sent by the guest scientist.  Later sections describe each of 

these in detail.   

9.1.1 Time-division multiple access 
The satellites and laptop (referred to in the context of communications as “stations”) use a time-

division multiple access (TDMA) protocol to enable transmission of information by all stations.  

During the software initialization process, a transmit window and frame length must be specified for 

each channel and station.  The transmit window is the portion of the TDMA frame during which that 

particular station may transmit.  The transmit windows on a given channel for different stations must 

not overlap, and the transmit windows for the two channels on a particular sphere should not overlap.  

For optimal performance, the window length should be approximately equal to the time required for an 

integral number of packet cycles (serial transmit followed by RF transmit), which is approximately 

12 ms for a standard packet.  The frame length may be chosen arbitrarily by the guest scientist, but it 

should be noted that a frame duration of no more than half the control period is necessary to guarantee 

that time for packet delivery is available within a given control period. 

 

A simple function, commTdmaStandardInit(…), is provided to set default values for the TDMA 

parameters. 

9.1.2 Loss of communications 
The laptop acts as a master time reference, and periodically broadcasts frame synchronization packets 

on the STL channel.  Each time a sphere receives a synchronization packet, it resets a frame counter.  

Failure to receive several of these synchronization packets in a row is interpreted as loss of 

communications due to departure from the test volume, and results in safing.  The satellite response to 

a safing event is to cease all transmissions and disable the thrusters.  This behavior is required to 

address ISS safety requirements. 

9.2 Background Communications 
Several types of important data may be regularly exchanged over the STL channel between the 

satellites and the laptop in processes transparent or semi-transparent to the guest scientist; these 

processes are termed background communications.  Background telemetry provides a convenience 

service by automatically transmitting the current state estimate to the laptop and the other satellites.  

This simplifies data sharing and post-processing data reduction, since the telemetry data are in a 

standard form.  By default, the background telemetry data contain the internal state estimate (note: the 

internal state estimate is not yet implemented), but this can be changed using 

commBackgroundPointerSet(…), which tells the background telemetry process to read its state 

data from a user-specified state vector.  The pointer can be reset to the default value with 

commBackgroundPointerDefault().  State data sent by one satellite through background 

communications can be retrieved by another satellite by calling comBackgroundStateGet(…).  

Background telemetry is periodic, and the period at which the state estimate is sent can be changed at 

any time using the function commBackgroundTelemetryPeriodSet(…).  This function 



 30 

retrieves both the state estimate and the time at which the estimate was received from the specified 

satellite.   

 

The internal state estimate is also transmitted over the STL channel with the state of health packet at a 

default rate of 1 Hz.  No facility exists for extracting the state estimate from the state of health data 

during run-time.  

9.3 Foreground Communications 
Arbitrary data can be sent between spheres using a standard set of telemetry packing and queuing 

functions, though it is up to the guest scientist to provide code to interpret the data when they are 

received.  Explicit transmission of data is termed foreground communication, and is achieved using 

the function commSendPacket(…) to send a single packet of data, or datacommSendData(…) 

to send data of arbitrary length.  A set of packing functions is supplied to support conversion of 

various data types into an acceptable telemetry format.  These packing functions will be detailed in a 

future release. 

10 Initialization 

10.1 Program initialization 
During the initialization process after a program upload or reset, two initialization functions are called 

by the flight software.  The function gspIdentitySet(…) is used only to set the logical (software) 

identity of the host satellite. 

 

gspIdentitySet(…) 

 A primary interface function used to set the logical SPHERE identity.  This function should contain 

only a single call to sysIdentitySet(…), and nothing else. 

 

The function gspInitProgram(…) must be used to set certain important parameters, as well 

perform any custom initialization. 

 

gspInitProgram(…) 

 A primary interface function used to initialize the program at startup. 

 

The functions called from gspInitProgram(…) specify the satellite logical identity number and 

other important properties of the satellite; this is therefore the only GSP-related function that must 

contain certain function calls.  Specifically, the following functions must be called, in the order shown 

here: 

 

 commTdmaInit(COMM_CHANNEL_STL,…) 

 commTdmaInit(COMM_CHANNEL_STS,…) 

 padsInertialAllocateBuffers(…) 

 padsInitializeFPGA(…) 

 datacommTokenSetup(COMM_CHANNEL_STL,…) 

 datacommTokenSetup(COMM_CHANNEL_STS,…) 

 

Note that the function commTdmaStandardInit(…) can be substituted for commTdmaInit(…).  

The required initialization functions are demonstrated in the template version of gsp.c. 
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10.2 Test initialization 
The primary interface function gspInitTest(…) is called whenever a new test is commanded 

through the laptop control station.   

 

gspInitTest(…) 

 A primary interface function that is called whenever a new test begins. 

 1 unsigned (test_number) The new test number. 

 

This function should be used to initialize test-specific quantities, such as 

padsInertialPeriodSet(…) and padsGlobalPeriodSet(…).  Only one sphere should 

call padsGlobalPeriodSet(…), in order to designate a PADS master.  If multiple spheres call 

padsGlobalPeriodSet(…), each one will periodically request global updates, possibly resulting 

in unexpected behavior.   

11 SPHERES Simulation 
The SPHERES simulation is designed to maximize the effectiveness of interactions between the Guest 

Scientist and the MIT SPHERES team.  It is particularly valuable during early stages of algorithm 

development and implementation, as an aid in accelerating the learning curve for the GSP interface.  

The simulation environment is completely in MATLAB. Therefore, the simulation can be used for 

verifying the general desired behavior of a test, with multiple satellites.  However, it cannot be used to 

verify compilation in C or integration with SPHERES C library functions.  Detailed documentation on 

the SPHERES MATLAB simulation can be found at the following address: 

http://ssl.mit.edu/spheres/gsp/SpheresMatlabSimDocumentation.pdf.    

 

Note: the current version of the SPHERES MATLAB simulation is undergoing a major upgrade 

that will support a C-code interface to the GSP software.  Updated documentation and software 

will be posted on the GSP website at http://ssl.mit.edu/gsp/. 

12 Expansion Port 
Each sphere is equipped with an expansion port that may be used to interface with additional 

hardware.  The expansion port is provisionally supported through the ICD located at 

http://ssl.mit.edu/spheres/gsp/SPHERES_Expansion_Port_ICD1.pdf. Parties interested in using the 

expansion port should contact the SPHERES team at spheres-gsp@mit.edu for further details. 
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14 Appendix A - Secondary interface API 
This section contains descriptions of the secondary functions, those routines which may be called from 

Guest Scientist code, but containing source code which may not be directly modified, or even 

available.  The secondary functions comprising the API are separated into several header files, 

grouped by subsystem or logical applicability.  Most of these header files are included by default in 

the gsp.c template. 

14.1 Header file comm.h 
Prototypes for the following functions can be found in the file comm.h. 

 
void commBackgroundPointerSet(…) 

 Sets the background telemetry address to argument 1.  All future background telemetry will be read 

from that address. 

 1 state_vector* The address of the state data to be sent through background telemetry. 

 
void commBackgroundPointerDefault() 

 Sets the background telemetry address to its default value.  All future background telemetry will be 

read from the internal state estimate. 

 
int commAssignChannel(…) 

 Associates a logical channel identifier with a physical channel frequency.  This function is 

experimental, and has not been fully tested.  Returns zero for success, or one of the error codes 

COMM_ILLEGAL_CHANNEL or COMM_ILLEGAL_FREQ for failure. 

 1 int Logical identifier: COMM_CHANNEL_STS or COMM_CHANNEL_STL. 

 2 int Physical frequency: COMM_FREQ_916MHZ or COMM_FREQ_868MHZ. 

 
int commSendPacket(…) 

 Places a single packet in a communications queue.  Returns the sequential packet number if 

successful or COMM_ERR_CANT_SEND if the operation failed. 
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 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 2 int To:  BROADCAST, GROUND, SPHERE1, SPHERE2, SPHERE3, 

SPHERE4, or SPHERE5. 

 3 int From:  GROUND, SPHERE1, SPHERE2, SPHERE3, SPHERE4, 

or SPHERE5. 

 4 int Command.  Must be COMM_CMD_GSP_PACKET. 

 5 default_rfm_payload A 32-byte memory space containing the packet data. 

 6 unsigned Mode:  COMM_MODE_NEED_ACK (for critical communications 

requiring a return receipt) or COMM_MODE_NO_ACK (for 

standard communications). 

 
int commTdmaInit(…) 

 Configures the TDMA timing for this satellite.  Arguments are specific to this particular satellite, 

for transmit and receive on the specified channel only.  The window length (argument 3 minus 

argument 2) must be at least 20 ms, and the STL channel must reserve 40 ms at the end of the frame 

for the laptop.  Note that the frame length (argument 4) is included for local information purposes; a 

subsequent frame will not actually begin until a frame synchronization packet is send by the laptop 

over the STL channel.  This means that specifying an STS frame length shorter than the STL frame 

length will waste bandwidth.  Returns 0 for success, or -1 for failure. 

 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 2 int Window start time [ms]. 

 3 int Window end time [ms]. 

 4 int Frame length [ms]. 

 
int commTdmaStandardInit(…) 

 Initializes the TDMA timing using standard window assignments for a 200 ms TDMA frame.  The 

standard TDMA frame assigns equal transmit time to each satellite.  Returns 0 for success, or -1 for 

failure. 
 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 2 unsigned The logical identifier of the local satellite:  SPHERE1, SPHERE2, SPHERE3, 

SPHERE4, or SPHERE5. 

 3 unsigned Number of satellites:  one through five, inclusive.  Greater than five does not 

return an error, but does waste communications bandwidth. 

 
int commTdmaEnable(…) 

 Enables transmission on the specified channel.  Returns 0 for success, or -1 for failure. 
 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 
int commTdmaDisable(…) 

 Disables transmission on the specified channel.  Returns 0 for success, or -1 for failure. 

 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 
unsigned commTdmaIsEnabled(…) 

 Returns TRUE if the specified channel is enabled, or FALSE if it is disabled. 

 1 int Channel:  COMM_CHANNEL_STL or COMM_CHANNEL_STS. 
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int commBackgroundStateGet(…) 

 Retrieves the most recently state telemetry for the specified satellite, as transferred through the 

background telemetry process.  Returns 0 for success, or -1 for failure 
 1 unsigned The logical identifier of the satellite for which state data are desired:  

SPHERE1, SPHERE2, SPHERE3, SPHERE4, or SPHERE5. 

 2 unsigned* The address into which the time stamp of the state data will be copied. 
 3 state_vector* The address of a state_vector into which the state data will be 

copied. 

 
int commBackgroundTelemetryPeriodSet(…) 

 Sets the rate at which the background telemetry packets are sent to the communications queue.  

Returns 0 for success, or -1 for failure. 

 1 unsigned Period:  the time between background telemetry transmissions [ms].  Must be 

greater than 20.  A value of SYS_FOREVER disables background telemetry. 

 
unsigned commBackgroundTelemetryPeriodGet() 

 Returns the current background telemetry period, in milliseconds.  A return value of 

SYS_FOREVER indicates that background telemetry is disabled. 

14.2 Header file comm_datacomm.h 
Prototypes for the following functions can be found in the file comm_datacomm.h. 

 
int datacommSendData(…) 

 Sends data of arbitrary size through the STS or STL communication channel.  The user must specify 

a tag, which is used by the recipient to determine how to parse the included data.  More details to 

follow later….  This function is not fully tested. 

 1 unsigned TBD 

 2 unsigned char* TBD 

 3 unsigned TBD 

 4 unsigned TBD 

 5 unsigned TBD 

 6 unsigned TBD 

 7 unsigned* TBD 

 
datacommTokenSetup(…) 

 Initializes flow control for data transfer, using a leaky bucket scheme.  Suggested values for the 

arguments are given, based on the following definitions. 

 N: number of satellites. 

 C: TDMA frame time (default 200) [ms]. 

 K: Packet time (~12 for a standard packet) [ms]. 

 S: Fraction of TDMA cycle reserved for satellites. 

 Q: Fraction of bandwidth reserved for datacomm transfers. 

Suggested values are: 

 1 satellite: period = 25, tokens = 8. 

 2 satellites: period = 50, tokens = 8. 

 3 satellites: period = 75, tokens = 8. 

 1 unsigned Channel:  either COMM_CHANNEL_STL or COMM_CHANNEL_STS. 

 2 unsigned Ideal period = N*K/(Q*S) 
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 3 unsigned Maximum number of stored tokens = C*S/(N*ideal period) 

14.3 Header file commands.h 
This file does not contain any function prototypes.  It is included primarily for the definitions of 

COMM_CMD_GSP_PACKET and cmdpkt_payload_overlay. 

14.4 Header file control.h 
Prototypes for the following functions can be found in the file control.h. 

 
unsigned ctrlPeriodSet(…) 

 Sets the period for the periodic control interrupt process.  Returns the value of the period previously 

in use. 

 1 unsigned The desired control period [ms].  A value of SYS_FOREVER disables the 

periodic control interrupt. 

 
unsigned ctrlPeriodGet() 

 Returns the current control interrupt period, in milliseconds.  A return value of SYS_FOREVER 

indicates that the periodic control interrupt is disabled. 

 
ctrlTestTerminate(…) 

 Terminates the current test.  Argument 1, sent to the laptop in the state of health packet, can be used 

as a return code to signal the state of success of the test. 

 1 unsigned A return code that is sent to the laptop through the state of health packet. 

 
ctrlManeuverTerminate() 

 Terminates the current maneuver and increments the maneuver number.  Additional changes in the 

satellite behavior upon maneuver termination are strictly dependent on the Guest Scientist’s 

implementation. 

 
ctrlManeuverNumSet(…) 

 Terminates the current maneuver and sets the maneuver number to argument 1.  Additional changes 

in the satellite behavior upon maneuver termination are strictly dependent on the Guest Scientist’s 

implementation. 

 1 unsigned Desired maneuver number. 

 
unsigned ctrlManeuverNumGet() 

 Returns the current maneuver number. 

 
int ctrlTestNumGet() 

 Returns the current test number. 

 
unsigned ctrlTestTimeGet() 

 Returns the elapsed time since the beginning of the current test, in milliseconds.  This timer is 

synchronized between the satellites to within one millisecond. 

 
int ctrlManeuverTimeGet() 

 Returns the elapsed time for the current maneuver. 
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ctrlTestInfoGet(…) 

 Retrieves extended information about the test currently in progress.  Useful for task and PADS-

related functions. 

 1 unsigned* Test number.  Equivalent to ctrlTestNumGet(). 

 2 unsigned* Elapsed test time.  Equivalent to ctrlTestTimeGet(). 

 3 unsigned* Maneuver number.  Equivalent to ctrlManeuverNumGet(). 

 4 unsigned* Elapsed maneuver time.  Equivalent to ctrlManeuverTimeGet(). 

14.5 Header file gsp.h 
The file gsp.h is available exclusively for customized use by the Guest Scientist.  See the separate 

section describing this file for details. 

14.6 Header file gsp_task.h 
Prototypes for the following functions can be found in the file gsp_task.h.  In addition to the 

following functions, the file contains definitions for task masks, as described in the section on the GSP 

task process. 

 
int taskTriggerMaskSet(…) 

 Sets the mask for the GSP task trigger.  Multiple trigger values can be combined with the bitwise 

OR operator to create the mask, e.g. PADS_GLOBAL_START_TRIG | GSP_USER_TRIG.  Each 

time this function is called, the previous mask values are overwritten.  Returns 0. 

 1 unsigned The trigger mask for the GSP task process. 

 
taskWaitForTime(…) 

 Triggers the task process after the number of milliseconds in argument 1 has transpired. 

 1 unsigned Number of milliseconds before task trigger. 

 
taskPostUserTrigger(…) 

 Explicitly posts a GSP_USER_TRIG event.  The task must have been previously set up to trigger 

on this type of event, by using taskTriggerMaskSet(…). 

 1 unsigned Extra data to be passed to the task. 

14.7 Header file gsutil_pack_data.h 
The functions in the file gsutil_pack_data.h will be described in a later release of this 

document. 

14.8 Header file pads.h 
Prototypes for the following functions can be found in the file pads.h. 

 
int padsInertialAllocateBuffers(…) 

 Allocates temporary storage for the rate gyroscope and accelerometer readings.  This function must 

be called exactly once in every program that uses the inertial sensors, in the gspInitProgram() 

function.  Since the kernel must store at least processing_period/sampling_period sets of samples, 

argument 1 should be set to the maximum ratio expected during a program's execution.  Warning: 

this function MUST be called before padsInertialPeriodSet(…). 

 1 unsigned The number of samples for which storage space should be allocated. 
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int padsInertialPeriodSet(…) 

 Sets up the sampling behavior for the inertial sensors (rate gyroscopes and accelerometers).  The 

sensors are sampled and the results recorded after the number of milliseconds specified by 

argument 1.  The processing function gspPadsInertial(…) is called with the period specified 

by argument 2.  This function can be called at any time, but calling it during a test discards all 

samples collected since the last processing call.  Warning:  the function 

padsInertialAllocateBuffers(…) must be called prior to using this function. 

 1 unsigned Sampling period. 

 2 unsigned Processing period. 

 
padsInitializeFPGA(…) 

 Initializes the PADS avionics hardware.  It must be called in the gspInitProgram() function, 

and may be called elsewhere as well. 

 1 unsigned Highest beacon number in use. 

 
padsGlobalPeriodSet(…) 

 Sets the global update period.  The global period should be set to zero for all except one satellite. 

 1 unsigned The number of milliseconds between periodic infrared flashes.  A value of 

SYS_FOREVER disables periodic global updates. 

 
unsigned padsGlobalPeriodGet(…) 

 Returns the number of milliseconds between the periodic infrared flashes used for global updates.  

A return value of SYS_FOREVER indicates that periodic global updates are disabled. 

 
padsGlobalTriggerNow() 

 Explicitly initiates an infrared flash, triggering an immediate global update. 

 
unsigned padsStateGet(…) 

 Retrieves the internal state estimate, and returns the time stamp of the estimate. 

 1 state_vector A destination into which the state estimate will be copied. 

 
padsBeaconNumberSet(…) 

 Sets the onboard beacon number to the value of argument 1.  Warning:  make sure that the beacon 

number does not conflict with that of a fixed beacon or another satellite. 

 1 unsigned Beacon number for the onboard beacon.  A value of 0 disables the beacon. 

 
int padsBeaconLocationSet(…) 

 Sets the location and pointing direction of a fixed beacon, in the global frame.  Returns 0 for 

success, or -1 for failure. 

 1 unsigned The beacon number. 

 2 float[3] The beacon position. 

 3 float[3] The beacon pointing direction. 

 
int padsBeaconLocationGet(…) 

 Retrieves the location and pointing direction of a fixed beacon, in the global frame.  Returns 0 for 

success, or -1 for failure. 

 1 unsigned The beacon number. 

 2 float[3] The beacon position. 

 3 float[3] The beacon pointing direction. 
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int padsTemperatureSet(…) 

 Sets the temperature used in calculating the speed of sound for use in global updates.  Returns 0. 

 1 float The temperature, in degrees Celsius. 

 
float padsTemperatureGet() 

 Returns the currently saved temperature, in degrees Celsius. 

14.9 Header file pads_correct.h 
Prototypes for the following functions can be found in the file pads_correct.h. 

 
padsCountsConvertGyros(…) 

 Converts raw rate gyroscope readings from counts to radians per second, using the currently stored 

conversion coefficients. 

 1 unsigned* Pointer to the source reading in counts. 

 2 float* Pointer to the destination reading in rad/s. 

 
padsCountsConvertAccels(…) 

 Converts raw accelerometer readings from counts to meters per second squared, using the currently 

stored conversion coefficients. 

 1 unsigned* Pointer to the source reading in counts. 

 2 float* Pointer to the destination reading in m/s
2
 

 
padsCountsCoefficientsSet(…) 

 Changes the bias and scale coefficients used for conversion of inertial measurements from counts to 

metric units. 

 1 float* Rate gyro bias [count]. 

 2 float* Rate gyro scale [rad/s/count]. 

 3 float* Accelerometer bias [count]. 

 4 float* Accelerometer scale [m/s
2
/count]. 

 
padsCountsCoefficientsGet(…) 

 Retrieves the bias and scale coefficients used for conversion of inertial measurements from counts 

to metric units.  The initial conditions for the coefficients are burned into the SPHERE flash 

memory. 

 1 float* Rate gyro bias [count]. 

 2 float* Rate gyro scale [rad/s/count]. 

 3 float* Accelerometer bias [count]. 

 4 float* Accelerometer scale [m/s
2
/count]. 

14.10 Header file prop.h 
Prototypes for the following functions can be found in the file prop.h. 

 
propSetThrusterTimes(…) 

 Specifies to the propulsion system when to open and close each thruster valve.  The on and off times 

in argument 1 are interpreted as offsets from the current time. 

 1 prop_time* A structure containing the on and off times for the thrusters [ms]. 
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unsigned short propGetThrusters() 

 Returns the current (commanded) on/off state of the thrusters.  Each of the first twelve bits of the 

return value represents a thruster.  A value of 1 is on; a value of 0 is off. 

14.11 Header file spheres_constants.h 
The header file spheres_constants.h contains definitions for constants used in the SPHERES 

software.  These constants should be used instead of defining new constants, whenever possible, to aid 

in readability and interoperability of the code. 

14.12 Header file spheres_physical_parameters.h 
Prototypes for the following functions can be found in the header file 

spheres_physical_parameters.h. 

 
sysPhysicalDefaultsSet() 

 Resets the physical parameters of the satellite (mass, inertia, etc) to their default values. 

 
float sysMassGet() 

 Returns the mass of the satellite [kg]. 

 
sysMassSet(…) 

 Sets the mass of the satellite. 

 1 float The mass of the satellite [kg]. 

 
sysInertiaGet(…) 

 Retrieves the inertia of the satellite. 

 1 float[3][3] The inertia matrix of the satellite. 

 
sysInertiaSet(…) 

 Sets the inertia of the satellite. 

 1 float[3][3] The inertia matrix of the satellite. 

 
sysInertiaInverseGet(…) 

 Retrieves the inverse of the inertia of the satellite. 

 1 float[3][3] The inverse of the inertia matrix of the satellite. 

 
sysInertiaInverseSet(…) 

 Sets the inverse of the inertia of the satellite. 

 1 float[3][3] The inverse of the inertia matrix of the satellite. 

 

14.13 Header file spheres_types.h 
The header file spheres_types.h defines several standard types used throughout the SPHERES 

code, including the data type used for the state estimate. 

14.14 Header file std_includes.h 
The header file std_includes.h includes several files that are specific to either flight or 

simulation builds.  The functions in these files are unlikely to be directly useful to guest scientists. 
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14.15 Header file system.h 
Prototypes for the following functions can be found in the file system.h.  See also the file 

spheres_physical_parameters.h for additional system functions. 

 
sysIdentitySet(…) 

 Sets the logical identity of the local satellite.  Note that this does not change the hardware 

(communications) address of the satellite.  This function must be called in the primary interface 

function gspIdentitySet(…). 

 1 unsigned Logical identity of the satellite:  SPHERE1, SPHERE2, SPHERE3, SPHERE4, 

or SPHERE5. 

 
unsigned sysIdentityGet() 

 Returns the logical identity of this satellite.  One of SPHERE1, SPHERE2, SPHERE3, SPHERE4, 

or SPHERE5. 

 
unsigned sysSphereTimeGet() 

 Returns the elapsed time since the last hardware reset, in milliseconds.  Unlikely to be useful, but 

available nonetheless.  Likely to be more useful is ctrlTestTimeGet(). 

 

14.16 Header file util_memory.h 
Prototypes for the following functions can be found in the file util_memory.h. 

 
atomic_memcpy(…) 

 Copies the number of bytes specified in argument 3 from the address specified by argument 2 to the 

address specified by argument 1.  Identical in function to the standard C routine memcpy(…), but 

modified so that it performs the copy procedure atomically with respect to all onboard software 

processes.  For this reason, this function should always be used instead of memcpy(…). 

 1 void* Address of destination memory space. 

 2 void* Address of source memory space. 

 3 unsigned Number of bytes to copy. 

14.17 Header file util_serial_printf.h 
Prototypes for the following functions can be found in the file util_serial_printf.h.  Note 

that printing data to the screen is inherently slow, so using any of the following functions can 

significantly slow the progress of the simulation. 

 
ser_print(…) 

 Prints a null-terminated character string to the simulation client message window.  Suggested use is 

to first format the string using sprintf(…). 

 1 char* A string to be displayed in the simulation client message window. 

 
ser_nprint(…) 

 Prints a specified number of characters to the simulation client message window. 

 1 char* The address of the character buffer. 

 2 int The number of characters to print. 
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print_int(…) 

 Prints a single integer, formatted in hexadecimal, to the simulation client message window. 

 1 unsigned The unsigned integer to be displayed. 

15 Appendix B – Standard Utilities 
This section describes the source files included with the GSP package.  Included in these files are the 

command, control, estimation, mixer, and terminator functions mentioned previously. 

15.1 Commands 
No command functions are included with this release of the GSP package.  A function is provided, 

however, to determine the state error given the current state and the current desired state.  This 

function, find_state_error(…), can be found in the files find_state_error.h and 

find_state_error.c. 

 
find_state_error(…) 

 Determines the state error, given the current state and desired state. 

 1 float* Resultant state error, of type state_vector or state_vector_extended. 

 3 float* Current state estimate, of type state_vector or state_vector_extended 

 4 float* Current desired state, of type state_vector or state_vector_extended. 

 

15.2 Control 
The standard control algorithms provided with the GSP package control either position and velocity or 

quaternion and rate.  In order to have full position and attitude control, one position and one attitude 

control function must be used.  These functions can be found in the directory standard\control. 

15.2.1 Position control 
Detailed descriptions and source code for the algorithms implemented in the following functions can 

be found in the files ctrl_attitude.h and ctrl_attitude.c. 

 
ctrlPositionPD(…) 

 Applies a proportional/derivative control law to the position and velocity errors, to produce force 

commands in the global frame. 

 1 float Position gain. 

 2 float Velocity gain. 

 3 float* State error, of type state_vector or state_vector_extended. 

 4 float* Resultant command, of type control_vector. 

 
ctrlPositionPDgains(…) 

 Applies a proportional/integral/derivative control law to the position and velocity errors, to produce 

force commands in the global frame. 

 1 float Position gain, x direction. 

 2 float Velocity gain, x direction. 

 3 float Position gain, y direction. 

 4 float Velocity gain, y direction. 

 5 float Position gain, z direction. 

 6 float Velocity gain, z direction. 
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 7 float* State error, of type state_vector or state_vector_extended. 

 8 float* Resultant command, of type control_vector. 

 
ctrlPositionPID(…) 

 Applies a proportional/derivative control law to the position and velocity errors, to produce force 

commands in the global frame. 

 1 float Position gain. 

 2 float Integral gain. 

 3 float Velocity gain. 

 4 float Thruster firing period, in seconds. 

 5 float* State error, of type state_vector or state_vector_extended. 

 6 float* Resultant command, of type control_vector. 

 
ctrlPositionPIDgains(…) 

 Applies a proportional/integral/derivative control law to the position and velocity errors, to produce 

force commands in the global frame. 

 1 float Position gain, x direction. 

 2 float Integral gain, x direction. 

 3 float Velocity gain, x direction. 

 4 float Position gain, y direction. 

 5 float Integral gain, y direction. 

 6 float Velocity gain, y direction. 

 7 float Position gain, z direction. 

 8 float Integral gain, z direction. 

 9 float Velocity gain, z direction. 

 10 float Thruster firing period, in seconds. 

 11 float* State error, of type state_vector or state_vector_extended. 

 12 float* Resultant command, of type control_vector. 

 

15.2.2 Attitude control 
References, detailed descriptions, and source code for the attitude control algorithms implemented in 

the following functions can be found in the files ctrl_attitude.h and ctrl_attitude.c. 

 
ctrlAttitudeNLPDsidi(…) 

 Applies a proportional/derivative control law to the position and velocity errors, to produce force 

commands in the global frame.  Note:  algorithm seems to work only for small error angles. 

 1 float Angle gain, body x axis. 

 2 float Rate gain, body x axis. 

 3 float Angle gain, body y axis. 

 4 float Rate gain, body y axis. 

 5 float Angle gain, body z axis. 

 6 float Rate gain, body z axis. 

 7 float* State error, of type state_vector or state_vector_extended. 

 8 float* Resultant command, of type control_vector. 

 
ctrlAttitudeNLPDwie(…) 

 Applies a proportional/derivative control law to the position and velocity errors, to produce force 

commands in the global frame. 
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 1 float Angle gain, body x axis. 

 2 float Rate gain, body x axis. 

 3 float Angle gain, body y axis. 

 4 float Rate gain, body y axis. 

 5 float Angle gain, body z axis. 

 6 float Rate gain, body z axis. 

 7 float* State error, of type state_vector or state_vector_extended. 

 8 float* Resultant command, of type control_vector. 

 
ctrlAttitudeNLPIDwie(…) 

 Applies a proportional/integral/derivative control law to the position and velocity errors, to produce 

force commands in the global frame. 

 1 float Angle gain, body x axis. 

 2 float Integral gain, body x axis. 

 3 float Rate gain, body x axis. 

 4 float Angle gain, body y axis. 

 5 float Integral gain, body y axis. 

 6 float Rate gain, body y axis. 

 7 float Angle gain, body z axis. 

 8 float Integral gain, body z axis. 

 9 float Rate gain, body z axis. 

 10 float Thruster firing period, in seconds. 

 11 float* State error, of type state_vector or state_vector_extended. 

 12 float* Resultant command, of type control_vector. 

 

15.3 Estimation 
No estimation algorithms are included in this release of the GSP package. 

15.4 Mixers 
Detailed descriptions and source code for the following mixer functions can be found in the files 

ctrl_mix.h and ctrl_mix.c. 

 
ctrlMixSimple(…) 

 Determines and sets thruster on and off times based on force and torque commands and pulse width 

modulation parameters.  Force may be specifed  

 1 float* Force and torque command, of type control_vector. 

 2 float* State estimate, of type state_vector or state_vector_extended. 

 6 unsigned Frame in which forces are measured: FORCE_FRAME_INERTIAL or 

FORCE_FRAME_BODY. 

 3 unsigned Minimum allowable pulse width [ms]. 

 4 unsigned Maximum allowable pulse width [ms]. 

 5 unsigned Delay multiplier.  Number of control periods to delay actuation. 

 

15.5 Terminators 
Detailed descriptions and source code for the following terminator functions can be found in 

ctrl_terminate.h and ctrl_terminate.c. 
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int ctrlTerminateManeuverTimed() 

 Ends the current maneuver when the clock in argument 1 reaches or surpasses the time specified in 

argument 2.  Returns 1 if the maneuver was terminated or 0 if it was not. 

 1 unsigned The reference clock, in milliseconds. 

 2 unsigned The desired termination time, in milliseconds. 

 
int ctrlTerminateTestTimed(…) 

 Ends the current test when the clock in argument 1 reaches or surpasses the time specified in 

argument 2.  Returns 1 if the test was terminated or 0 if it was not. 

 1 unsigned The reference clock, in milliseconds. 

 2 unsigned The desired termination time, in milliseconds. 

 3 unsigned The test result return code, as explained for ctrlTestTerminate(…). 

 

16 Appendix C –Change Log 
The following is a summary of the changes made to each release version of the GSP package. 

2009-04-23 (v2.1) 
Updated references to simulation to include note about upcoming upgrades.  Added a link to the 

expansion port ICD. 

2009-04-23 (v2.0) 
This release is primarily to remove the previous C simulation and replace it with working Matlab 

simulation.  The C simulation was not fully functional and could not continue to be supported.  Thus, 

the Matlab very has been tested to be functional and will now on be the supported version of the 

simulation by the SPHERES team.   

2003-10-29 (v1.2) 
This release contains several major and minor bug fixes, in addition to additional functionality and 

increased simulation fidelity.  

 

API changes: 

- Added a new primary interface function gspIdentitySet(…), which contains only a single 

call to the function sysIdentitySet(…).  Removed the call to sysIdentitySet(…) in 

gspInitProgram(…).  Note:  all existing copies of gsp.c must be modified by adding 

gspIdentitySet(…). 

- The defined quantities TASK_WAIT_FOREVER and PADS_GLOBAL_DISABLE have been 

deprecated, and will be removed in a future release.  Use SYS_FOREVER instead. 

 

Bug fixes: 

- Fixed initialization of thruster torque; thruster 0 previously worked properly, but thrusters 1-11 

were incorrectly initialized, leading to random torque. 

- Fixed ctrlManeuverTerminate(…); it previously caused a random maneuver number, 

rather than the next maneuver number, to begin. 

- Fixed range data units, now consistently reported in [m]; speed of sound was previously 

initialized in [cm/s], resulting in range data in [cm]. 

- Fixed test termination behavior.  Ending a test with ctrlTestTerminate(…) now stops both 

the simulation and the test, rather than just the test. 
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- Fixed memory initialization:  powering off and on a sphere client closes and reopens the 

executable, guaranteeing that the memory state is initialized correctly. 

- Fixed onboard beacon:  padsBeaconNumberSet(…) no longer crashes the simulation. 

- Fixed padsGlobalTriggerNow(…); it was not triggering global updates. 

- TDMA slot conflicts are reported by the server. 

- STL and STS communications percentages on the server display are more accurate. 

- Selecting and deselecting “Check for updates on start-up” multiple times no longer prints garbage 

data to the messages window. 

- Removed extraneous zeros added to SPHERE5 telemetry by spheres_data_convert.m. 

 

Simulation: 

- Modified server/client communications behavior to support changing the software ID of a 

satellite during a test. 

- Opening the GSP interface document from within the simulation now loads the most recent 

version from the MIT SSL web site. 

- Added menu items to access online bug status and HOWTOs from the simulation server. 

 

Documentation: 

- Added description of new primary interface function gspIdentitySet(…).  Merged 

document and simulation version numbers. 

 

2003-09-26 (document v1.1, simulation v1.0) 
This is the first complete release of the GSP package. 

 

Simulation: 

- The initial public release of the simulation. 

 

Document: 

- This is a major update to the document, to accompany the initial public release of the SPHERES 

GSP simulation.  Due to a CPU and operating system upgrade, the capabilities of the testbed, 

from a software implementation perspective, have increased dramatically since the release of v1.0 

of the interface document.  The large number of changes in this document reflects these new 

capabilities.  Because this is the first release of the document that is accompanied by source code 

and the simulation, and because the changes to the interface are so pervasive, individual changes 

from v1.0 are not listed here. 

 

2002-11-20 (document v1.0) 
The initial public release of the GSP interface document. 


